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“About 30 years ago there was much talk that Geologists ought only to observe & not theorise; & I 

well remember some one saying, that at this rate a man might as well go into a gravel-pit & count 
the pebbles & describe their colours. How odd it is that every one should not see that all observation 

must be for or against some view, if it is to be of any service.” Darwin (1861) 
 

Abstract: The eastern redbud, Cercis canadensis, is a small tree native to eastern North 
America that has become a commonly used ornamental in the United States and worldwide. 
We used laboratory experiments to test whether the seedpods of eastern redbuds are wind 
dispersed by exposing them to pulses of air blowing at different wind speeds. Rush 
milkweed, Asclepias subulata, seeds, which have morphological modifications that make 
them truly wind dispersed, were used for comparison. At all speeds tested (0, 25, 35 km/h), 
at a height of 190.5 cm above the ground, the seedpods of C. canadensis remained airborne 
much for a shorter time than the seeds of A. subulata. At all wind speeds tested, eastern 
redbud seedpods were minimally wind dispersed. Among all variables measured (wind 
speed, seedpods, mass, length, width, and area), wind speed explained approximately 0.28 
(linear regression) of the seedpod dispersal. 
 
Key Words: Dispersule, wind dispersal, wind dispersion, Cercis canadensis, Fabaceae, 
Asclepias subulata, Asclepiadaceae  

 
Introduction 

Knowing how organisms disperse is essential for conservation strategies (Cowen 
1990, Strykstra et al. 1998, Houghton et al. 2020, particularly amidst global climate 
change, West 2018) and for understanding one of the major forces of evolution, the 
moving of organisms (or parts of them) via migration. Besides vegetative dispersal, 
reproductive structures, such as spores (bryophytes and pteridophytes) as well as 
pollen and seeds (gymnosperms and angiosperms) are also units of dispersal, or 
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dispersules (e.g., Strykstra et al. 1998). Spores and pollen are transported by wind, 
animals, or water.  

Cercis canadensis (Linnaeus, 1753) (Fabaceae), commonly known as eastern 
redbud or eastern North America redbud (Figure 1), is a small tree (generally fewer 
than 15 m tall) native to the eastern half of the United States and southeastern 
continental Canada (Dickson 1990), although it appears to be uncommon in the latter. 
In most of its native range, where the tree is relatively common in forest understories, 
eastern redbuds produce insect pollinated flowers early in the year (in southern 
Pennsylvania, in April to May, Figures 1A and 1B), thereafter, develop cordate leaves 
(Figure 1C) that abscise in the fall. Seedpods mature, turning from green to dark 
brown, and remain attached to stems during the rest of the year in which they were 
formed and often up to the early spring of the following year (Figure 1C). 

Eastern redbuds reproduce sexually by seeds, which are born in flattened fruits, 
known as seedpods or legumes. Although the shape of the seedpods and seeds lack 
obvious wind-dispersal structures, Krugman et al. (1974) and Dickson (1990) 
suggested that the seeds are wind dispersed. Because the seedpods of C. canadensis 
almost invariably fall undehisced (JASB, personal observations; Dustin Stoll, 
personal communication to Santiago-Blay, January 17, 2023), we assumed that 
Krugman et al. (1974) and Dickson (1990) meant that the seedpods, carrying the 
seeds, are the dispersal units or dispersules. This interpretation was confirmed by 
Dickson (personal communication to Santiago-Blay, March 15, 2023). 

Herein, we tested the wind dispersal hypothesis for redbud seedpods. The 
null hypothesis is that C. canadensis seedpods stay airborne under different wind 
speed conditions as much as true wind dispersed structures, such the seeds of 
Asclepias subulata. The alternative hypothesis is that C. canadensis seedpods do 
not remain airborne as much as wind dispersed seeds. Because the focus of this 
paper is C. canadensis seedpods, we measured how much the seedpods of C. 
canadensis disperse under different wind speed conditions. 

 
Methods 

Study organisms. On January 15, 2023, sixty seedpods of C. canadensis (Figure 
2A) were selected among a much larger cohort collected on 19 December 2022 from 
two trees located in front of 2801 Concord Road in Springettsbury Township (York 
County, Pennsylvania, USA; latitude 39.982807, longitude -76.668805). The 
seedpods were kept refrigerated until the beginning of the experiments.  

For comparison, seedpods of A. subulata, whose seeds (Figure 2B) are fluffy, light, 
and wind dispersed, were collected at the campus of the University of Arizona (Tucson, 
Arizona, USA; latitude 32.230507, longitude -110.951992) on February 14, 2023, and 
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were used shortly after their arrival. Exemplars of other wind dispersed propagules (seeds 
or fruits), such as seeds of the common dandelion, Taraxacum officinale (Linnaeus) Weber 
ex F. H. Wiggers, Matricaria sp. (both Asteraceae) or of the American sycamore, Platanus 
occidentalis Linnaeus (Platanaceae) as well as wind dispersed fruits, such as the samaroid 
schizocarp of maples (Acer sp., Sapindaceae) or the samaras of elms (Fraxinus sp., 
Oleaceae) were not available to us at the time of the experiments. All the seeds of A. 
subulata were destroyed after the conclusion of the experiments. 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Eastern North America redbud, Cercis canadensis Linnaeus, 1753 (Fabaceae). A. Tree 
in bloom. Photo taken at the Duke Forest Korstian Division, Durham, North Carolina, USA by 
Dcrjsr. Date: March 16, 2012. CC-BY-3.0. 
https://commons.wikimedia.org/wiki/File:Cercis_canadensis_redbud_tree_bloom.jpg . B. Close-
up of C. canadensis flowers. Photo taken by Richard Turcotte. Morgantown, West Virginia, USA. 
Date: April 18, 2023 (photo courtesy Richard Turcotte, USDA Forest Service). C. Close-up of 
leaves and seedpods. Photo in panel C taken at Nixon Park, York County, Pennsylvania, USA by 
author JASB. Date: October 18, 2023. Copyright of image in panel C by JASB. 

A 

B C 

https://commons.wikimedia.org/wiki/File:Cercis_canadensis_redbud_tree_bloom.jpg
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The eastern redbud seedpods length and maximum width were measured (in mm) 
with a digital caliper (General ® Ultra TechTM No. 1433); their mass (in grams) was 
measured with calibrated analytical scales [Entris (Sartorius Lab Instruments, 
Göttingen, Germany) and New Classic ML (Mettler Toledo, Greifensee, 
Switzerland].  

We selected seedpods of similar size. The mass of the eastern redbud 
seedpods and of the rush milkweed seeds, including their floss (Evangelista 2007), 
were recorded before and after the conclusion of all experiments to account for 
any weight lost during the experiments. On average, the Eastern redbud seedpods 
were 64.7 mm long (sd = 5.9, se = 0.8), 11.9 mm. maximally wide (sd = 0.6, se = 
0.1), and their average mass was 0.102 g (measured before the tests, sd = 0.039, 
se = 0.005). On average, C. canadensis seedpods lost only about a 1.1% of their 
mass after the experiments. On average, the mass of A. subulata seeds was 0.007 
g before the tests (sd = 0.002, se = 0.001). The mass of A. subulata seeds was not 
weighed after the experiments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Dispersal units. A. Cercis canadensis seedpod. B. Asclepias subulata seed. Scale 
bars represent 1 cm. Photos taken by author KO.  

B 

A 
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Experimental conditions. To minimize air disturbance, these experiments 
took place inside a long, leveled hallway of a college building during some 
Saturday and Sunday afternoons, from January to March 2023 [wind speed in 
hallway in the absence of experiments, 0 km/h; temperature 15-24°C; relative 
humidity, 20-37%; barometric pressure, 29-30 inches of mercury (736.6-762 mm 
of mercury)]. The experimental setup included two tables, the smaller on top of 
the larger, upon which a metal stand, a ring, and clamps holding a two speed (slow 
and fast, no heat) hair blower were positioned at 190.5 cm (75 inches) - a height 
chosen for safety reasons - above the ground (Figure 3A).   
 

 

Figure 3. Experimental setup for the airborne time and dispersal distance of Cercis 
canadensis and Asclepias subulata. A. Overall setup. Note the narrower exit neck of the 
funnel used for C. canadensis seedpods. B. Closeup of setup used for A. subulata.  

A B 
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The wind speed was measured with a digital anemometer (Kestrel 3000 
Pocket Weather Meter, Nielsen-Kellerman, Inc., Boothwyn, Pennsylvania, USA). 
A kitchen funnel was placed directly in front of a hair blower [Vidal Sassoon 
IonizerTM hair blower (Vidal Sassoon, China) with the ionizer setting on], which 
had a PVC pipe (72 mm long, inner diameter 60 mm) attached to its front to 
concentrate the turbulent air being blown. Dispersules were dropped into the 
funnel one by one.  

Airborne time experiments. We compared the airborne time of ten randomly 
selected and enumerated C. canadensis seedpods and ten A. subulata seeds. We 
repeated this experiment at three different wind speeds (0 km/h, 25 km/h and 35 
km/h) always using the same twenty dispersules. A web chronometer 
(http://online-stopwatch.chronme.com/) was used to measure the travel time. The 
wider exit neck (Figure 3B) was used for seeds of A. subulata to ease their descent. 

Distance travelled by Cercis canadensis seedpods experiments. We measured 
the distance traveled by the 60 enumerated seedpods C. canadensis, which were 
dropped one by one into the funnel on each experiment, experienced a pulse of air 
immediately upon exiting the funnel (Figure 3A). The hair blower was kept in the 
on position for approximately two to three minutes, which was the duration of 
each replicate for every experiment. The horizontal distance travelled by the 
seedpods of C. canadensis with respect to the vertically projected funnel’s exit 
was measured. The middle of the seedpods C. canadensis was used as the 
measuring point. Five different wind speeds5 (0, 5, 15, 25, and 35 km/h) were 
tested. Three replicates were performed for each of the eastern redbud seedpods.  
The experiments wind speed of 5 km/h and 15 km/h required additional 
adjustments consisting of rods supporting the funnel placed in front of the hair 
blower at the appropriate distances.  

Statistical analyses. For the airborne time experiments, we performed t-tests 
for every speed tested as well as a two-factor analysis of variance (ANOVA) with 
replication. The two factors analyzed were, first, species (A. subulata and C. 
canadensis) and, second, wind speed. To dissect what may be statistically 
associated with the large variability in the distance that the dispersules travelled, 
we performed simple linear regression and two-factor analysis of variance 

 
5 Wind speed measurements taken at ground level in a redbud study site are generally about 5 km/h. 

This study site, which has been visited by author JASB and his collaborators since 2018, is located 
behind the Nature Center at Nixon Park (latitude 39.8853313, longitude -76.7346893), near the town 
of Jacobus in York County, Pennsylvania, USA (Frey 2022, Santiago-Blay et al. 2022, Figure 1). 
This site has about 50 Cercis canadensis trees ranging from approximately 3 to 15 m height within 
an area of approximately 1,000 m2. 

http://online-stopwatch.chronme.com/


Life: The Excitement of Biology 11(2) ……….…….………....…….…….…….………….… 46 
 

(ANOVA) with replication. In the latter experiments, the factors were, first, wind 
speed, and second, replicate. Also, we performed multiple regression analyses. 
Excel was used to complete all statistical analyses. An online site containing the 
Kolmogorov-Smirnov test (Stangroom, no date) was used to assess the normality 
of the data distribution for each wind speed - species in the airborne time 
experiments as well as for each wind speed in the distance travelled by Cercis 
canadensis seedpods experiments. In all cases, the data was not significantly 
different statistically from that which is normally distributed.  

 
Results 

Airborne time experiments. Cercis canadensis seedpods fell to the ground 
faster than A. subulata seeds at every wind speed tested (t-test, p < 0.001). Table 1 
summarizes our results. These statistical results were supported by a two-factor 
ANOVA (p < 0.001, with speed and species as the two factors) that also strongly 
suggested that A. subulata seeds remain airborne (circa 3.7-3.8 s) longer, 
approximately 2.75x, than redbud seedpods (circa 1.2-1.5 s).  

 
Table 1. Average time, in seconds (standard deviation) that Cercis canadensis seedpods and 
Asclepias subulata seeds take to reach the floor at different wind speeds. Two-factor ANOVA 
with replication, p < 0.001. Under the assumptions of projectile motion, particularly no 
friction due to air, the expected time of flight with an angle of launch of 0 degrees and an 
initial height of 1.905 m is 0.623 s (see Appendix 1 and Szyk and Pamula 2023). 
 

 Average time (standard deviation) of dispersule to 
reach the floor at different wind speeds 

 Wind Speed (km/h) 
Species 0 km/h 25 km/h 35 km/h 
Cercis canadensis seedpods 1.27 (0.19) 1.35 (1.30) 1.47 (1.06) 
Asclepias subulata seeds 3.75 (1.11) 3.77 (1.18) 3.76 (1.14) 

 
Distance travelled by C. canadensis seedpods. Eastern redbud seedpods 

dispersed minimally through air (Table 2). Not surprisingly, the higher the wind 
speed, the more the seedpods disperse (c.f., Figure 4).  

 
Table 2. Average distance travelled, in cm (standard deviation) by Cercis canadensis seedpods at 
different wind speeds, h = 1.905 m.  

Wind speed (km/h) 0 5 15 25 35 
Average distance travelled,  
in cm (standard deviation) 

38.8 
(22.3) 

46.9 
(24.0) 

59.4  
(28.5) 

78.5 
(35.5) 

91.7 
(42.3) 
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Although the coefficient of determination, R2, of the average distance travelled 
at each wind speed is nearly 0.996 (graph not shown), when the entire data are 
plotted and the coefficient of determination is recalculated, the R2 is 0.28, 
immediately suggesting that factors besides wind speed affect the distance a redbud 
seedpod travels. A multiple regression model used demonstrates that there is large 
variation in the distance traveled by the seedpods, with wind speed being the only 
statistically significant variable among those measured (p < 0.05, Table 3).  

 

Figure 4. Average distance traveled by Cercis canadensis seedpods as a function of wind 
speed. Note large variation in distance traveled by C. canadensis seedpods and the 
corresponding relatively low coefficient of determination, R2 = 0.28. 
 
Table 3. Summary of the multiple regression analyses conducted on the distance travelled 
of Cercis canadensis seedpods. Wind speed is the only significant (p < 0.05) factor related 
to distance travelled. Significant values are highlighted in slightly larger font and bolded.  

Multiple regression analysis 
 df SS MS F Significance F 
Regression 6 130240.1 21706.69 19.87528859 1.78385E-19 
Residual 293 319998.4 1092.145   
Total 299 450238.5    
       

 Coefficients Standard 
error t Stat p value Lower  

95% 
Upper 
95% 

Intercept -561.8264504 455.4762 -1.23349 0.18380717 -1458.246224 334.5933 
Seedpod # 0.04510452 0.11621 0.388268 0.698099697 -0.183590837 0.273832 
Wind speed 1.574796748 0.14899 10.56981 2.46429E-22 1.281570232 1.868023 
Mass before 101.8625971 73.16181 1.392292 0.164889783 -42.12668085 245.8519 
Area -0.670715979 0.580521 -1.15537 0.248880631 -1.813235494 0.471804 
Pod length 8.031640299 6.91472 1.161528 0.246372626 -5.577174921 21.64046 
Pod width 48.83550549 38.01254 1.284721 0.199904505 -25.97671593 123.6477 

x = 1.5267 v + 38.62 
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A two-factor ANOVA with replication not only confirms that there is a 
statistically significant effect of wind speed (p < 0.05, Table 4) on the dispersal of 
C. canadensis seedpods but also a significant interaction effect (p < 0.05, Table 4).  
 
Table 4. Summary analyses for a two-factor ANOVA (Analysis of Variance). Wind speed, 
compared by columns, is significantly (p < 0.05) related to distance travelled as is the 
interaction factor (wind speed and replicate, p < 0.05). Significant values are highlighted 
in slightly larger font and bolded. 
 

Two-factor ANOVA 
Source of 
variation SS df MS F p value F crit 

Sample 194.8583 2 97.42914 0.10102 0.903925 3.005896 
Columns 345454.3 4 86363.56 89.54648 6.3E-64 2.38199 
Interaction 29367.58 8 3670.948 3.80624 0.000208 1.948848 
Within 853542.8 885 964.4552    
Total 1228560 899     

 
We suggest that this interaction effect on the distance traveled is, in part, 

related to the precise orientation of the C. canadensis seedpods with respect to the 
pulse of air. We did not control this as the seedpods descended through the funnel 
(Figure 3B). Furthermore, it was not the purpose of this project to explore the 
details of the dynamics of the seedpods’ movement in the laboratory.  
 

Discussion 
We acknowledge the limitations of our experimental method. First, plant 

dispersules generally do not travel following a projectile trajectory. Based on our 
field observations, seedpods do not fall following a simple parabolic trajectory 
(c.f., comments on interaction factor in Table 4). In the forest, as seedpods fall, 
they may collide with branches and other obstacles on their way down. Second, 
in a forest, where C. canadensis lives, air is not a relatively small, cylindrical 
moving mass and the fruits are not exposed to just a pulse of air6. Instead, wind 
moves at different velocities through the vertical structures of a forest (Raupach 
1994, Finnigan 2000). Third, wind velocity is affected by numerous factors, such 
as  temperature, as well as size, distribution, and density of the obstacles (i.e., as 
trunk, branches, leaves; Niklas and Spatz 2004, Turner 1988), topography, edge 
effects (Turner 1988), etc.  

 
6 Our initial attempts to study how much redbud seedpods move began with fans. However, we quickly 

realized that we did not have easy access to the appropriate machinery and expertise to simulate 
nature at an appropriate scale. Hence, we opted for the simpler setup described in the Methods. 
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In native forests, most seedpods remain attached to the redbud trees and 
remain closed following abscission. On December 26, 2023, JASB visited the 
Nixon Park site and walked within and around a cluster of C. canadensis trees 
loaded with thousands of seedpods (Figure 5) finding dozens to hundreds of 
seedpods under the redbuds’ canopy. Also, he found isolated seedpods scattered 
circa 1-5 meters (circa 3-17 feet) outside the cluster. When JASB vigorously 
shook several trees, the few seedpods that fell did so vertically or nearly so. In 
Oklahoma, where C. canadensis is the state tree, “a small proportion of the 
seedpods look like they were opened by insects eating them. Some seedpods were 
broken off, probably by the wind beating them against the branches. And others 
were completely burst open - could be due to extreme cold or extreme temperature 
fluctuation. About 95% of the seedpods were still intact on the tree, not opened. 
Some seedpods had already fallen to the ground under the tree, but it did not look 
like the wind had blown them more than a few centimeters (inches) away from 
the parent tree” (Stoll to Santiago-Blay, personal communication, January 17, 
2023). For urban trees, paved surfaces, such as roads, are likely to ease the wind 
dispersal of C. canadensis seedpods and seeds. The same can be said of seedpod 
dispersal under the influence of extraordinarily strong winds. 

 

 
 

Figure 5.  A group of redbud trees, C. canadensis, loaded with seedpods (brown to dark 
brown objects on branches) at Nixon Park, York County, Pennsylvania, USA. This has 
been one of the sites for the study of eastern redbuds that author JASB and colleagues of 
his have used since 2018. 
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Based on our field observations as well as those of other colleagues, and our 
experimental results, we conclude that C. canadensis seedpods are minimally 
dispersed by wind. Houghton et al. (2020) performed similar laboratory 
experiments on Astragalus holmgreniorum Barneby (Fabaceae), a small 
herbaceous plant, and noted similar limited dispersal. However, unlike their 
observations, we did not see a single redbud seedpod release seeds as they traveled 
during our experiments. Also, the seedpod mass of C. canadensis decreased only 
approximately 1% supporting our assertion that redbud seedpods are unlikely to 
release seeds during their wind-driven sojourns.  

If the role of wind dispersal is minimal for C. canadensis seedpods, what other 
evolutionary forces may be responsible for the genetic variation that has been 
detected within the species? 

Dispersal by animals. Animals assist in the admixing of conspecifics through 
the large geographical range of C. canadensis (Sullivan 1994). Some animals (quail, 
pheasants, and deer, Brown and Brown 1972; birds, Collingwood and Brush 1974; 
deer, Hunter 1989; eastern woodrats, Neotoma floridana (Ord, 1818), Post 1992; 
deer, cattle, birds, and squirrels, Stubbendieck and Conard 1989) have been reported 
as herbivores on redbud, and, in some cases, specifically, the seedpods. The bees, 
Osmia lignaria lignaria Say, 1837 (Megachilidae) and Habropoda laboriosa 
(Fabricius, 1804) (Apidae), have been observed carrying pollen of C. canadensis 
(Kraemer et al. 2014, Cane and Payne 1988).  

Another source of plant-animal trophic interactions data is the examination of 
gut contents. In our experience, papers including gut contents data where species 
identification of the remnants of eaten food items are usually difficult to find. The 
analyses of digestive tract, including fecal contents, has contributed to the 
knowledge of animals that feed on C. canadensis, including red deer, Cercus 
elaphus Linnaeus, 1758 (Schneider et al. 2006). Those types of data are becoming 
more accessible owing to advances in molecular genetics and stable isotope 
techniques (Carreon-Martinez and Heath 2010, Kartzinel et al. 2015, Kundu et al. 
2020, Petrone et al. 2023, Rytkönen et al. 2009, Valentini et al. 2009). However, we 
are unaware of publicly available, searchable, global databases where fecal DNA is 
identified to species.  

Significant genetic (Wadl et al. 2012, Davis et al. 2002, Coşkun 2003, Coşkun 
and Parks 2009, Thammina et al. 2017 all for congeneric species of Cercis; not for 
genome size and ploidy levels, Roberts and Werner 2016), physiological (Abrams 
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1988), and morphological (Chen and Werner 2021, Donselman 1976, Donselman 
and Flint 1982, Roberts et al. 2015) variability has been reported for C. canadensis7. 

Selection and genetic drift. On the southern – and more arid - range of its 
distribution, such as southern Texas (USA) and northern México, some of the 
variation within redbuds has been linked to environmental factors, such as water 
availability (Fox et al. 2014, Griffin et al. 2004), suggesting that natural selection is 
an important evolutionary force shaping the gene pool of C. canadensis through its 
southern range. Conversely, on the northern – and more mesic range - genetic drift 
via population bottlenecks has been suggested as an ultimate cause of variation on 
eastern redbuds (Ony 2019, Ony et al. 2019, Ony et al. 2021). As for the time of 
occurrence of this genetic variation, the possibility that it has an older origin has 
been suggested (Ony et al. 2021).  
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Appendix 1 

Under ideal conditions, the coordinates (x, y) of a projectile pushed horizontally 
with speed, v, from a height, h, are:  

 

x = (v)(t), y = (½)gt2 ,  
 
where g is the gravitational constant, 9.8 m/s2. Because t = x/v, eliminating the t 
yields the following equation,  
 

𝑥𝑥 = (𝑣𝑣)�2ℎ
𝑔𝑔

 , 

 
that describes the horizontal distance the object has moved when it completes its 
travel, namely, h = 0. A plot of the horizontal distances as a function of air speed is 
given on Figure 6 (next page). 
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Figure 6. Distance travelled (in m) as a function of pulse of air speed (km/h) under ideal 
ballistic conditions. Dot’s colors denote height (m) from which the object is being propelled: 
red denotes 15, blue 10, yellow 5, green 2, orange 1, and black 0. The white dot on the origin 
represents the distance travelled when the pulse of air speed = 0, regardless of the height. 
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